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A two-parameter accelerating FODO cell.
From circular reasoning to straight thinking.
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Although linacs are not storage rings, a similar language is used to describe their
optical properties. This can be confusing. The periodicity of storage rings allows un-
ambiguous definitions of “global lattice functions” – e.g., dispersion, beta, and phase
advance – as properties of the machines themselves, with no reference to beam param-
eters other than energy. The “beta function” of a linac or the “phase advance” between
two points in a linac cannot be defined in the same way. Further, in computing the lat-
tice functions of a storage ring we assume a constant energy machine; this is extended
to synchrotrons by assuming that the fields change adiabatically, over many turns. In
contrast, acceleration can take place in a linac between consecutive quadrupoles.

We want to apply standard formulae from the theory of storage rings – which we
will call “circular reasoning” (CR) – to a linac – whose theory we will call “straight
thinking” (ST). These CR formulae involve lattice functions, and it is desirable to know
how to apply them correctly and what sort of errors are made if they are applied without
modification. To examine some of these questions, we will look at a simple model that
straddles the two theories, a periodic structure that is a straightforward generalization
of CR’s FODO cell: the accelerating FODO cell. It will possess three formal param-
eters: the length of a drift section, the focal lengths of the quadrupoles, and a number
representing the energy gain of the accelerating structure. However, the drift’s length
will serve to set the scale, so our model will have only two essential parameters.

Transfer matrix of an accelerating FODO cell.

A simple accelerating FODO cell is sketched in Figure 1. A drift section, not a bend-
ing magnet, separates the quads, and in it is placed a “thin” (zero length) accelerating
structure. The quadrupoles are also thin, and their magnetic fields are arranged so that
the focal length remains constant; that is, their gradients scale with momentum.

To first order, the effect of the accelerating structure on the transvere coordinates is
to “rescale” the transverse momentum – or, equivalently, to reduce the transverse ve-
locity – as represented by the transfer matrix,(

x
x′

)
( f )

=
(

1 0
0 pi/p f

)
·
(

x
x′

)
(i)
.

Here pi and p f are the total momentum of the particle upon entering and exiting the
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structure. We define g≡ pi/p f and write the transfer matrix for the full “drift” section.

O =
(

1 l/2
0 1

)(
1 0
0 g

)(
1 l/2
0 1

)
=

(
1 l(1 + g)/2
0 g

)
In the limit of no acceleration, g = 1, while g = 0 represents extreme acceleration. For
highly relativistic particles,

g = pi/p f ≈ Ei/E f =
1

1 +(E f −Ei)/Ei
=

1
1 + ∆E/E

.

The transfer matrices through the quads are the same as those used in CR, so we can
immediately write the full transfer matrix through the accelerating FODO cell.

M = F ·O ·D ·O

=
(

1 0
−1/ f 1

)(
1 l(1 + g)/2
0 g

)(
1 0

1/ f 1

)(
1 l(1 + g)/2
0 g

)
=

(
1 l(1 + g)/2
−1/ f g− l(1 + g)/2 f

)(
1 l(1 + g)/2

1/ f g + l(1 + g)/2 f

)
(1)

=
(

1 +(l/2 f )(1 + g) (1 + g)2(l/2)(1 + l/2 f )
+(1/ f )(g−1− (l/2 f )(1 + g)) −(l/2 f )(1 + g)+(g2− ((l/2 f )(1 + g))2)

)
In writing all of this, we are finessing the question, “What is x′?” The variable that

makes a drift a linear element is not the same as the one that makes a thin quadrupole a
linear element. The former requires x′ = px/p3 = dx/ds — where px is the transverse
and p3 the longitudinal momentum, and ds is longitudinal differential arc length —
while the latter uses x′ = px/p — where p is the total momentum of the particle, used
as a reference scaling parameter. In confusing these two variables throughout the calcu-
lation, we implicitly require that p≈ p3 and insist that the resulting equations are valid
only to first order in the transverse variables. In this context, it is amusing to note that,
at relativistic velocities, dx/ds = (dx/dt)/(ds/dt) decreases because the accelerating
structure actually decelerates the transverse component of velocity1 while leaving the
longitudinal component (essentially) unchanged.

Eigenvalues.

The eigenvalues of M determine the “phase advance” and amplitude reduction per cell.
Because M is a matrix of real numbers, its eigenvalues come in complex conjugate
pairs; because it is not symplectic, we do not expect the eigenvalues to lie on the unit
circle. We express them as exp(−Γ± iµ) and obtain them easily as follows.

det(M) = (e−Γ)2 = g2

Tr(M) = 2e−Γ cosµ

= 1 + g2−
(

l
2 f

(1 + g)
)2

1That is, it decelerates in a direction orthogonal to the applied force.
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The first equation is written quickly by noting that the determinant of a product is the
product of the determinants and that det(O) = g,while det(F) = det(D) = 1. Rearrang-
ing terms slightly provides the results,

g = e−Γ (2)(
l

2 f

)2

=
1 + g2−2gcosµ

(1 + g)2

=
(1 + g)2−2g(1 + cosµ)

(1 + g)2 (3)

= 1− 4g
(1 + g)2 cos2(µ/2) .

In the limit g = 1 we obtain the usual relation,

l
2 f

= sin(µ/2) . (4)

From the first line of Eq.(3), we see that the oscillatory condition, |cosµ | ≤ 1, requires
that the inequality

1−g
1 + g

≤ l
2 f
≤ 1

be satisfied. This is illustrated in Figure 2, which shows the surface generated by Eq.(3).

β, from the transfer matrix.

In CR, the eigenvectors of M are related to the “lattice functions” of the cell. In the limit
g = 1, we are familiar with the relationship,

1
µ

lnMCR =
(

α β
−γ −α

)
. (5)

This representation is possible because of the symplecticity of MCR. Although the M
of Eq.(1) is not symplectic, we can generalize Eq.(5) to it by factoring out the adiabatic
damping. That is, eΓM is symplectic, so that we can write

1
µ

ln
(

eΓM
)

=
1
µ

(Γ + lnM) =
(

α β
−γ −α

)
(6)

in place of Eq.(5). (Notice that eΓM, M, and lnM all possess the same eigenvectors.)
Because of Eq.(2) and Eq.(1), we can obtain the same result by altering the definition
of O.

Osymplectic ≡ g−1/2O =
(

g−1/2 l(g−1/2 + g1/2)/2
0 g1/2

)
Effectively, this rescales the transverse phase space coordinates to remove the amplitude
reduction due to acceleration.
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With this trick, we can calulate the “beta function” from the off-diagonal component
of M in the usual circular reasoning manner.

β sinµ = eΓ M12 =
1
g

M12

Using Equations (1) and (3) and rearranging terms a little provide the result.

β/l =
1

2sinµ
(2 + g + 1/g )

(
1 +

√
1− 4g

(1 + g)2 cos2(µ/2)

)

(This is β at the location of the focussing quad; at the defocussing quad, merely replace
1 +
√
· · ·with 1−

√
· · ·.) A family of these curves is plotted in Figure 3 for discrete val-

ues of g between 0.1 and 1. Unrealistically extreme acceleration would be required to
observe a significant deviation from the g = 1 limit.

Propagating lattice functions.

We now compare expressions for “propagating” lattice functions in both CR and ST. In
ST one defines “lattice functions” in terms of the covariance of the beam.

C =
(
〈x2〉 〈xx′〉
〈x′x〉 〈x′2〉

)
≡ det(C)1/2

(
β −α
−α γ

)
(7)

This is in agreement with Eq.(5) when the covariance matrix is that of an invariant el-
lipse of the one-turn matrix, MCR. However, the beam need not be matched to the ma-
chine, so that α and β are arbitrary here. Let MBA symbolize the linear transfer matrix
from point A to point B in the machine, so that

C(B) = MBA ·C(A) ·MT
BA .

Combining this with the definition in Eq.(7) provides the following.(
β −α
−α γ

)
(B)

=
1

det(MBA)
MBA ·

(
β −α
−α γ

)
(A)
·MT

BA (8)

In formally eliminating C from this equation, we have used

det(C(B)) = det(C(A))det(M(BA))
2 .

On the other hand, because of the connection with the period-advance map via Eq.(5),(
α β
−γ −α

)
(B)

= MBA ·
(

α β
−γ −α

)
(A)
·M−1

BA . (9)

This is valid even for g< 1 : according to Eq.(6), we simply subtract Γ/µ from both
sides of the equation.
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Superficially Eq.(8) and Eq.(9) look different, but one can be transformed into the
other by using the 2×2 matrix identity,(

0 −1
1 0

)
·MT ·

(
0 1
−1 0

)
=

(
0 −1
1 0

)
·
(

M11 M21
M12 M22

)
·
(

0 1
−1 0

)
=

(
M22 −M12
−M21 M11

)
= det(M) M−1 .

We will use this with Eq.(8) to produce Eq.(9).(
α β
−γ −α

)
(B)

=
(

β −α
−α γ

)
(B)
·
(

0 1
−1 0

)
=

1
det(MBA)

MBA ·
(

β −α
−α γ

)
(A)
·MT

BA ·
(

0 1
−1 0

)
=

1
det(MBA)

MBA ·
(

β −α
−α γ

)
(A)
·
(

0 1
−1 0

)
·
(

0 −1
1 0

)
·MT

BA ·
(

0 1
−1 0

)
= MBA ·

(
α β
−γ −α

)
(A)
·M−1

BA

Obviously, one can go in the other direction as well, producing Eq.(8) from Eq.(9), so
that the two equations are indeed equivalent. It is therefore not remarkable that they
both result in the expression: α

β
γ


(B)

=
1

det(MBA)
·

 M11M22 + M12M21 −M11M21 −M22M12
−2M11M12 M2

11 M2
12

−2M22M21 M2
21 M2

22

 ·
 α

β
γ


(A)

Error in phase advance.

The accelerating FODO cell that we have described, while enabling us to calculate ex-
act quantities, is not actually used as the basic unit of periodically structured linacs. In
extending results to realistic linacs, one approach is to ignore acceleration except for its
effect on scaling the transverse phase space variables. Thus, while β actually depends
on g, which changes from cell to cell, this can be safely ignored because the dependence
is so weak for reasonable values of ∆E/E. The phase advance per cell, µ, also changes
very little, but, unlike β, phase accumulates as one progresses down a chain of cells. The
error that one would make by neglecting its dependence on g can become significant af-
ter a sufficient number of cells. An estimate of this effect is shown in Figure 4. For a
given g and µ, Eq.(3) is first used to find the parameter l/2 f . Using this value, Eq.(4)
then provides the (incorrect) phase advance, say µ1, obtained by ignoring acceleration.
The difference, µ−µ1, is plotted in Figure 4 as a function of µ, the correct phase ad-
vance, while labelling each curve by the corresponding ∆E/E = 1/g−1.They indicate
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that, for a 90◦ phase advance per cell, and for ∆E/E even as large as 0.02, one would
have to go through something like 100 cells before accumulating a 1◦ phase error. This
gives us an estimate of the extent over which we can trust standard CR formulae that
involve the phase advance, provided we modify them to take phase space rescaling into
account.

Conclusions.

For reasonable values of fractional energy gain per cell, the lattice functions of the ac-
celerating FODO cell differ negligibly from those of the ordinary FODO cell. In par-
ticular, one must traverse hundreds of cells before accumulating an appreciable error in
phase advance. The key step in connecting the CR and ST quantities is to remove the
transverse phase space compression caused by the accelerating structure.
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Figure 1: Sketch of an accelerating FODO cell.
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Figure 2: Ratio of quarter-cell length to focal length.

7



0 30 60 90 120 150 180
Phase advance per cell  [ deg ]

0.0

10.0

20.0

B
et

a 
m

ax
 / 

L

g = 0.1

0.2

0.3

Figure 3: Maximum beta in the cell.
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Figure 4: Phase error per cell induced by ignoring acceleration.
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